M-CLIP/XLM-Roberta-Large-Vit-B-32

transformersmultilingualaftransformerspytorchtfM-CLIPmultilingualaf
237.9K

Load Model & Tokenizer

model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name) tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)

embeddings = model.forward(texts, tokenizer) print("Text features shape:", embeddings.shape)


Extracting embeddings from the corresponding image encoder:

```python
import torch
import clip
import requests
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image = preprocess(image).unsqueeze(0).to(device)

with torch.no_grad():
    image_features = model.encode_image(image)

print("Image features shape:", image_features.shape) 

Evaluation results

None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following R@10 results:

NameEnDeEsFrZhItPlKoRuTrJp
OpenAI CLIP Vit-B/3290.3----------
OpenAI CLIP Vit-L/1491.8----------
OpenCLIP ViT-B-16+-94.3----------
LABSE Vit-L/1491.689.689.589.988.990.189.880.885.589.873.9
XLM-R Large Vit-B/3291.888.789.189.489.389.891.482.186.188.881.0
XLM-R Vit-L/1492.490.691.090.089.791.191.385.285.890.381.9
XLM-R Large Vit-B/16+95.093.093.693.194.093.194.489.090.093.084.2

Training/Model details

Further details about the model training and data can be found in the model card.

DEPLOY IN 60 SECONDS

Run XLM-Roberta-Large-Vit-B-32 on Runcrate

Deploy on H100, A100, or RTX GPUs. Pay only for what you use. No setup required.