facebook/contriever

transformerstransformerspytorchbertarxiv:2112.09118endpoints_compatibleregion:us
7.7M

Apply tokenizer

inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

Compute token embeddings

outputs = model(**inputs)

Mean pooling

def mean_pooling(token_embeddings, mask): token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.) sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None] return sentence_embeddings embeddings = mean_pooling(outputs[0], inputs['attention_mask'])

DEPLOY IN 60 SECONDS

Run contriever on Runcrate

Deploy on H100, A100, or RTX GPUs. Pay only for what you use. No setup required.