flair/ner-english

token classificationflairenflairpytorchtoken-classificationsequence-tagger-modelendataset:conll2003
133.0K

load tagger

tagger = SequenceTagger.load("flair/ner-english")

make example sentence

sentence = Sentence("George Washington went to Washington")

predict NER tags

tagger.predict(sentence)

print sentence

print(sentence)

print predicted NER spans

print('The following NER tags are found:')

iterate over entities and print

for entity in sentence.get_spans('ner'): print(entity)


This yields the following output:

Span [1,2]: "George Washington" [− Labels: PER (0.9968)] Span [5]: "Washington" [− Labels: LOC (0.9994)]


So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*". 


---

### Training: Script to train this model

The following Flair script was used to train this model: 

```python
from flair.data import Corpus
from flair.datasets import CONLL_03
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings

# 1. get the corpus
corpus: Corpus = CONLL_03()

# 2. what tag do we want to predict?
tag_type = 'ner'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize each embedding we use
embedding_types = [

    # GloVe embeddings
    WordEmbeddings('glove'),

    # contextual string embeddings, forward
    FlairEmbeddings('news-forward'),

    # contextual string embeddings, backward
    FlairEmbeddings('news-backward'),
]

# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer = ModelTrainer(tagger, corpus)

# 7. run training
trainer.train('resources/taggers/ner-english',
              train_with_dev=True,
              max_epochs=150)

Cite

Please cite the following paper when using this model.

@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}

Issues?

The Flair issue tracker is available here.

DEPLOY IN 60 SECONDS

Run ner-english on Runcrate

Deploy on H100, A100, or RTX GPUs. Pay only for what you use. No setup required.