tagger = SequenceTagger.load("flair/ner-english-ontonotes")
sentence = Sentence("On September 1st George Washington won 1 dollar.")
tagger.predict(sentence)
print(sentence)
print('The following NER tags are found:')
for entity in sentence.get_spans('ner'): print(entity)
This yields the following output:
Span [2,3]: "September 1st" [− Labels: DATE (0.8824)] Span [4,5]: "George Washington" [− Labels: PERSON (0.9604)] Span [7,8]: "1 dollar" [− Labels: MONEY (0.9837)]
So, the entities "*September 1st*" (labeled as a **date**), "*George Washington*" (labeled as a **person**) and "*1 dollar*" (labeled as a **money**) are found in the sentence "*On September 1st George Washington won 1 dollar*".
---
### Training: Script to train this model
The following Flair script was used to train this model:
```python
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
"resources/tasks/onto-ner",
column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
tag_to_bioes="ner",
)
# 2. what tag do we want to predict?
tag_type = 'ner'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
# GloVe embeddings
WordEmbeddings('en-crawl'),
# contextual string embeddings, forward
FlairEmbeddings('news-forward'),
# contextual string embeddings, backward
FlairEmbeddings('news-backward'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/ner-english-ontonotes',
train_with_dev=True,
max_epochs=150)
Please cite the following paper when using this model.
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
The Flair issue tracker is available here.