huyydangg/DEk21_hcmute_embedding

sentence similaritysentence-transformersvisentence-transformersonnxsafetensorsrobertasentence-similarityfeature-extractionapache-2.0
37.6K

DEk21_hcmute_embedding

DEk21_hcmute_embedding is a Vietnamese text embedding focused on RAG and production efficiency:

📚 Trained Dataset:
The model was trained on an in-house dataset consisting of approximately 100,000 examples of legal questions and their related contexts.

⚙️ Efficiency: Trained with a Matryoshka loss, allowing embeddings to be truncated with minimal performance loss. This ensures that smaller embeddings are faster to compare, making the model efficient for real-world production use.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Language: vietnamese
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer
import torch
from pyvi import ViTokenizer

# Download from the 🤗 Hub
model = SentenceTransformer("huyydangg/DEk21_hcmute_embedding")

# Define query (câu hỏi pháp luật) và docs (điều luật)
query = "Điều kiện để kết hôn hợp pháp là gì?"
docs = [
    "Điều 8 Bộ luật Dân sự 2015 quy định về quyền và nghĩa vụ của công dân trong quan hệ gia đình.",
    "Điều 18 Luật Hôn nhân và gia đình 2014 quy định về độ tuổi kết hôn của nam và nữ.",
    "Điều 14 Bộ luật Dân sự 2015 quy định về quyền và nghĩa vụ của cá nhân khi tham gia hợp đồng.",
    "Điều 27 Luật Hôn nhân và gia đình 2014 quy định về các trường hợp không được kết hôn.",
    "Điều 51 Luật Hôn nhân và gia đình 2014 quy định về việc kết hôn giữa công dân Việt Nam và người nước ngoài."
]

# Tách từ cho query
segmented_query = ViTokenizer.tokenize(query)

# Tách từ cho từng dòng văn bản
segmented_docs = [ViTokenizer.tokenize(doc) for doc in docs]

# Encode query and documents
query_embedding = model.encode([segmented_query])
doc_embeddings = model.encode(segmented_docs)
similarities = torch.nn.functional.cosine_similarity(
    torch.tensor(query_embedding), torch.tensor(doc_embeddings)
).flatten()

# Sort documents by cosine similarity
sorted_indices = torch.argsort(similarities, descending=True)
sorted_docs = [docs[idx] for idx in sorted_indices]
sorted_scores = [similarities[idx].item() for idx in sorted_indices]

# Print sorted documents with their cosine scores
for doc, score in zip(sorted_docs, sorted_scores):
    print(f"Document: {doc} - Cosine Similarity: {score:.4f}")

Evaluation

Metrics

Information Retrieval

modeltypendcg@3ndcg@5ndcg@10mrr@3mrr@5mrr@10
huyydangg/DEk21_hcmute_embedding_wsegdense0.9084050.9147920.9177420.8895830.8930990.894266
AITeamVN/Vietnamese_Embeddingdense0.8426870.8549930.8650060.8221350.829010.833389
bkai-foundation-models/vietnamese-bi-encoderhybrid0.8272470.8447810.8469370.7992190.8095050.806771
bkai-foundation-models/vietnamese-bi-encoderdense0.8141160.829650.8395670.7966150.8052860.809572
AITeamVN/Vietnamese_Embeddinghybrid0.7887240.8100620.8207970.7583330.772240.776461
BAAI/bge-m3dense0.7840560.806650.8170160.7632810.7758590.780293
BAAI/bge-m3hybrid0.7752390.7973820.8119620.7476560.7633330.77128
huyydangg/DEk21_hcmute_embeddingdense0.7521730.7692590.7851010.724740.7344270.741076
hiieu/halong_embeddinghybrid0.736270.7571830.7791690.7104170.7219010.731976
bm25bm250.7281220.749740.7616120.6994790.7111980.715738
dangvantuan/vietnamese-embeddingdense0.7189710.7465210.7634160.6963540.7119530.718854
dangvantuan/vietnamese-embeddinghybrid0.717110.7435370.7583150.6901040.7047920.712261
VoVanPhuc/sup-SimCSE-VietNamese-phobert-basehybrid0.6884830.7138290.7338940.6601560.6711980.676961
hiieu/halong_embeddingdense0.6563770.6758810.7013680.6304690.6414060.652057
VoVanPhuc/sup-SimCSE-VietNamese-phobert-basedense0.5588520.5847990.6113290.5369790.551120.562218

Citation

You can cite our work as below:

@misc{DEk21_hcmute_embedding,
  title={DEk21_hcmute_embedding: A Vietnamese Text Embedding},
  author={QUANG HUY},
  year={2025},
  publisher={Huggingface},
}

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
DEPLOY IN 60 SECONDS

Run DEk21_hcmute_embedding on Runcrate

Deploy on H100, A100, or RTX GPUs. Pay only for what you use. No setup required.